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A new approach for numerical simulation of quantum
transport in double-gate SOI
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SUMMARY

Numerical simulation of nanoscale double-gate SOI (Silicon-on-Insulator) greatly depends on the accurate
representation of quantum mechanical effects. These effects include, mainly, the quantum confinement of
carriers by gate-oxides in the direction normal to the interfaces, and the quantum transport of carriers
along the channel. In a previous work, the use of transfer matrix method (TMM) was proposed for the
simulation of the first effect. In this work, TMM is proposed to be used for the solution of Schrodinger
equation with open boundary conditions to simulate the second quantum-mechanical effect. Transport
properties such as transmission probability, carrier concentration, and I–V characteristics resulting from
quantum transport simulation using TMM are compared with that using the traditional tight-binding
model (TBM). Comparison showed that, when the same mesh size is used in both methods, TMM gives
more accurate results than TBM. Copyright # 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Continuing advances in integrated circuit technology results in a variety of new device structures
with feature size in the nanometer range. With those advances, two main challenges arise: (1) the
modelling of the complex physical phenomena that control the device behaviour in the so
extremely small dimensions; and (2) the prediction of the response of novel device geometries.
Technology computer aided design (TCAD) simulation tools are valuable aids to cope with
both of the two challenges. For modelling physical phenomena, TCAD tools become
indispensable as analytical models are no longer feasible. On the other hand, trend analysis
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using TCAD tools have been successfully applied to optimize the device operation at a time
when such transistors were not readily manufacturable [1].

Double-gate (DG) SOI transistors have emerged as promising devices for very large-scale
integration circuits due to their better scalability compared to bulk CMOS [2]. The transport of
carriers in the channel of a DG SOI (Figure 1) is controlled by two (top and bottom) gates.
Numerical simulation of nanoscale DG SOI on the quantum level includes the solution of
Poisson equation and Schrodinger equation self-consistently [3,4]. Usually, the numerical
solution of Schrodinger equation in DG SOI is not implemented directly into two dimensions as
this needs excessive computational burden; instead, it is solved by what is called mode-space
representation [5]. In mode-space representation, Schrödinger equation is solved separately into
two directions: the first direction is normal to the interface (transverse direction, y), in which, the
carriers are confined by the upper and lower gate-oxides, and the second direction is parallel to
the interface (longitudinal direction, x), in which, the domain of solution is bounded by two
reservoirs of carriers (source and drain contacts). The first problem is 1D bounded problem
which results in discrete energy levels (eigenvalues) and corresponding carrier distribution
functions (eigenfunctions). The second problem is 1D unbounded problem, in which, the
solution is found by the integration of the eigenfunctions of a continuum of energies. This
integration is accomplished separately for carriers from both source and drain contacts and the
overall solution is the sum of the two integrations.

In a previous work [6], transfer matrix method (TMM) [7,8] was proposed to be used to solve
the first problem (bounded problem). In this work, TMM is proposed to be used for the
simulation of quantum transport through solution of the Schrodinger equation with open
boundary conditions (second problem). The transport is assumed ballistic [9], so no scattering
effects are included. Transport properties of DG SOI such as transmission probability, carrier
concentration, and I–V characteristics, resulting from simulation using TMM are compared
with that using tight-binding model (TBM) [10] which is traditionally used for the discretization
of Schrodinger equation.

In Section 2, the building blocks of device simulation on the quantum level are presented
along with an explanation for how Schrodinger equation is solved using mode-space
representation. The standard TBM approach used for quantum transport simulation is
explained in Section 3 while new TMM approach is given in Section 4. A group of results that
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Figure 1. A model double-gate SOI device divided into vertical slices.
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evaluate the use of TMM compared to TBM are shown and discussed in Section 5. Finally,
conclusion is given in Section 6.

2. QUANTUM SIMULATION OF DG SOI

Nanoscale DG MOSFET numerical simulation is performed by the self-consistent solution of
Poisson equation and Schrodinger equation [3,4]. Poisson equation is given as

r2V ¼ �
q

e
ðp� nþND �NAÞ ð1Þ

in which the electrical potential V can be determined given the quantities in the right-hand side
including hole and electron distributions p and n, and doping concentrations for donors and
acceptors ND and NA, respectively. In (1) q is electronic charge, and e is the permittivity of the
medium. On the other hand, Schrödinger equation with effective mass approximation can be
written as

� �h2

2mn
r2c� ðqV þ EÞc ¼ 0 ð2Þ

which, given the electric potential V, determines eigenenergies E and eigenfunctions c from
which the carrier concentrations can be obtained. In (2), �h is the modified Planck’s constant and
m� is the effective mass of carriers. Equations (1) and (2) are coupled such that the solution of
any one requires the result of the other; consequently, they are solved by iterative method until
self-consistence is obtained.

The Schrödinger equation is discretized using mode-space representation approach which
greatly reduces the size of the problem and provides sufficient accuracy when compared to full
2D spatial discretization [5]. Referring to Figure 1, a model DG SOI device is divided into
vertical slices, each of width a. For each vertical slice at x ¼ x0; a 1D effective mass equation in
the y-direction is written as

� �h2

2mn
y

d2cðx0; yÞ
dy2

þ ðUðx0; yÞ � EÞcðx0; yÞ ¼ 0 ð3Þ

where m�y is the effective mass of electrons in the y-direction and U ¼ �qV is the potential
energy. Equation (3) represents a 1D-bounded problem whose solution details can be found in
[6]. The solution results in a discrete set of eigenenergies and corresponding eigenfunctions, i.e. a
set of modes. For each mode m, the distribution of eigenenergies EmðxÞ along the x-direction
resulting from the solution of (3) is used to solve the 1D Schrödinger equation in the x-direction

� �h2

2mn
x

d2jðmÞðxÞ
dx2

� ðE � EmðxÞÞjðmÞðxÞ ¼ 0 ð4Þ

subject to open boundary conditions at source (left boundary) and drain (right boundary),
where m�x is the effective mass of electrons in the x-direction. Equation (4) is solved twice, one
assuming a plane wave is incident from the source contact, in which the solution is termed as,
jðmÞS ðxÞ; and the other assuming a plane wave is incident from the drain contact, where the
solution is termed jðmÞD ðxÞ: Once jðmÞS ðxÞ and jðmÞD ðxÞ are found, the device parameters such as,
the transmission probability, carrier density, and drain current can be calculated as given in
Section 5.
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The method of solution of Equation (4) is our concern in this work, in which, TMM is used to
solve it in place of TBM which was previously used. The details of TBM and TMM are given in
the following two sections, respectively.

3. TIGHT-BINDING MODEL

The domain of solution of (4) is the silicon channel whose boundaries are semi-infinite contacts
(source and drain). Figure 2 shows a sketch of the subband energy distribution along the
channel, which plays the role of the potential function in (4). Since inside the boundary regions,
the potential is uniform, plane wave solution is assumed there. The solution starts with assuming
a wave of unit amplitude is injected from the source contact and results in a wave function
jðmÞS ðxÞ: A portion of this wave is reflected to source in the negative x-direction and the other is
transmitted to the drain in the positive x-direction. Consequently, the wave function values
inside the boundaries can be written as [11]

jðmÞS ðxÞ ¼ 1eikSx þ re�ikSx ðx50Þ ð5aÞ

jðmÞS ðxÞ ¼ teikDx ðx > LÞ ð5bÞ

where

kS;D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mn

xðE �US;DÞ
p

=�h ð6Þ

In TBM, the domain of solution is divided into small intervals of width a bounded by nodal
points 1; 2; . . . ;N: Equation (4) is then written at any nodal point i using finite-difference
approximation [10] (the subscript S in jðmÞS ðxÞ is omitted hereinafter for clarity)

�ZðjðmÞi�1 � 2jðmÞi þ jðmÞiþ1Þ þUij
ðmÞ
i ¼ EjðmÞi

L
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Figure 2. The domain of solution for Equation (4). The boundaries are two semi-infinite contacts (source
and drain) at which plane waves are assumed. The wave function at the boundaries is shown here assuming

a unit amplitude wave is incident from left.
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or

�ZjðmÞi�1 þ ð2ZþUi � EÞjðmÞi � ZjðmÞiþ1 ¼ 0; i4i4N ð7Þ

where Z ¼ �h2=2m�a2: The boundary conditions are incorporated in the equations of points 1 and
N, at which (5a) and (5b) are used, respectively. On eliminating r and t, equations for nodal
points 1 and N are given, respectively, as

ð�ZeikSa þ 2ZþU1 � EÞjðmÞ1 � ZjðmÞ2 ¼ �2iZ sinðkSaÞ ð8aÞ

�ZjðmÞN�1 þ ð2ZþUN � E � ZeikDaÞjðmÞN ¼ 0 ð8bÞ

The system of equations (7) and (8) are solved for the wave function values jðmÞS ðxÞ at all nodal
points. The parameters r and t can then be found from (5a) and (5b).

A similar argument can be traced assuming a wave is incident from the drain, which results in
a wave function jðmÞD ðxÞ: The boundary conditions are, in this case

jðmÞD ðxÞ ¼ 1e�ikDx þ r0eikDx ðx > LÞ ð9aÞ

jðmÞD ðxÞ ¼ t0e�ikSx ðx50Þ ð9bÞ

where kS and kD are the same as in (6). Finite-difference equations similar to (7) and (8) can be
written and solved subject to the boundary conditions (9a) and (9b) to yield jðmÞD ðxÞ; r

0, and t0.
The solution of the whole system of equations is repeated at different values of energy that spans
the whole E(m)(x) range.

4. TRANSFER MATRIX METHOD

In TMM, the channel is again divided into small segments of width a, and the potential within
each segment is assumed constant as in TBM. However, in TMM, the wave function within any
segment n is approximated as [8]

jnðxÞ ¼ An expðanxÞ þ Bn expð�anxÞ ð10Þ

where

an ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mn

xðUn � EÞ
p

=�h ð11Þ

Applying the continuity conditions of jnðxÞ and djnðxÞ=dx between each two successive
segments, we arrive at a series of matrix equations relating An and Bn of any segment with those
of the preceding segment An�1 and Bn�1 as follows:

An�1

Bn�1

" #
¼M�1ðan�1; xn�1ÞMðan;xn�1Þ

An

Bn

" #
ð12Þ

where

Mðan;xmÞ ¼
eanxm e�anxm

aneanxm �ane�anxm

" #
ð13Þ

with xm ¼ ma; m ¼ 0; 1; 2; . . . ;N:
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Cascading all equations relating coefficients of successive segments to relate the coefficients of
the left boundary to that of the right boundary [see (5)] yields

1

r

" #
¼W

t

0

" #
ð14Þ

where

W ¼M�1ðaS; 0Þ �P �MðaD;LÞ ð15Þ

P ¼ P1P2 . . .PN ð16Þ

Pn ¼Mðan; xn�1ÞM�1ðan;xnÞ ð17Þ

According to (14), r and t can be found in terms of the matrix elements of W defined in (15) as
follows:

r ¼Wð2; 1Þ=Wð1; 1Þ and t ¼ 1=Wð1; 1Þ ð18Þ

Once r and t are known, all the coefficients An and Bn, and thus the wave function jðmÞS ðxÞ; can be
found from (12).

A similar procedure is followed assuming that the wave is incident from the drain rather than
from the source. Using the boundary conditions given in (9), the equation relating left and right
boundaries analogous to (14) will be

0

t0

" #
¼W

r0

1

" #
ð19Þ

in which W has the same definition as (15)–(17). From (19), the unknown coefficients r0 and t0

are given as

r0 ¼ �Wð1; 2Þ=Wð1; 1Þ

t0 ¼Wð2; 2Þ �Wð1; 2ÞWð2; 1Þ=Wð1; 1Þ ð20Þ

The wave function resulting from this solution is jðmÞD ðxÞ: The solution for jðmÞS ðxÞ and jðmÞD ðxÞ is
again repeated at different energies in the range of E(m)(x).

5. RESULTS AND DISCUSSION

The transport properties of a model DG SOI nMOSFET device were calculated using both
TBM and TMM methods. These properties include the transmission probability of carriers
through the channel, carrier density, and the drain current. For the comparison of accuracy of
the two methods, the results obtained by either method at a very fine mesh (at a large number of
segments) are taken as a reference. In this section, the methods of the calculation of the above-
mentioned transport properties are first explained, then, the results for TBM and TMM are
shown and discussed.

The transmission probability through the channel at a certain energy E, tðEÞ; can be found
either from the parameter t given in (5b) or the parameter t0 given in (9b) as follows [12]:

tðEÞ ¼ jtj2kD=kS ¼ jt0j2kS=kD ð21Þ

where kS and kD are given by (6).
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On the other hand, the m-mode contribution to the total electron density is thus found
from [11]

nðmÞ ¼
1

�ha

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mn

ykBT

2p3

r
�
R1
0 I�1=2ðFS � EÞjjðmÞS ðxÞj

2 þ I�1=2ðFD � EÞjjðmÞD ðxÞj
2 dE ð22Þ

where m�y is the effective mass of electrons in the y-direction, kB is the Boltzmann constant, T is
the temperature, I�1=2 is the Fermi–Dirac integral of order �1/2 [13], FS and FD are the Fermi
levels at source and drain contacts, respectively. The total electron density within the device is
found by the sum of all contributions of individual modes weighted by the probability function
jcmðx; yÞj

2 of each mode resulting from the solution of (3), i.e.

nðx; yÞ ¼
X
m

nðmÞjcmðx; yÞj
2 ð23Þ

The electron current per unit energy per unit device width, transmitted from source to drain
can be found at an energy E by [14]

IDðEÞ ¼
q

�h2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mn

ykBT

2p3

s
� ½I�1=2ðFS � EÞ � I�1=2ðFD � EÞ�tðEÞ ð24Þ

The terminal drain current can be calculated by the integration of ID(E) over energy, i.e.

ID ¼

Z
IDðEÞ dE ð25Þ

The model device is chosen by the thickness of top and bottom oxides Tox ¼ 1:6 nm while that
of the silicon film TSi ¼ 3:2 nm. The source/drain donor doping is 1020 cm�3 and substrate body
acceptor doping is 1010 cm�3. The top and bottom insulator relative dielectric constant is
assumed to be 3.9, while that of Si is 11.7. The length of the channel is 12 nm and the length of
source/drain region is 6 nm, thus the total length of the device is 24 nm. All simulations are
performed at room temperature (T ¼ 300K). It was found that a mesh of more than 120
segments corresponding to a mesh spacing less than 0.2 nm is adequately fine to make the results
of the two methods indistinguishable. Consequently, this mesh size is used for extracting
reference results.

Figure 3 shows the transmission probability as a function of energy when the model device is
biased at a drain voltage VD ¼ 0:1V and gate voltage (both gates) VG ¼ 0:1V. The figure shows
the results of TBM (dotted line) and TMM (dashed line) using a mesh of spacing 1.6 nm
(15 segments) for each. Reference results are also shown (solid line). It is evident from the
figure that TMM results are more accurate than TBM results. This is ascertained in Figure 4,
in which the errors in the calculation of the transmission probability using both methods
relative to the reference values are depicted. To compare the accuracy at different mesh sizes, the
maximum error in the calculation of the transmission probability by either method is drawn
versus mesh spacing, a, as illustrated in Figure 5. At a ¼ 1:6 nm, TMM has an error that is 4.6
times less than TBM. It should be noted that for a prescribed error maximum of 0.05, mesh
spacing used by TBM must not exceed 1.1 nm, while a mesh spacing of 1.6 nm is adequate when
TMM is used.

For the assessment of accuracy in the calculation of carrier concentration, the 2D subband
carrier density, N sub, along the channel was simulated using both TBM and TMM with mesh
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spacing 1.6 nm for each. The results are depicted in Figure 6 along with the reference curve
calculated with TBM using mesh spacing 0.2 nm. Near the middle of the channel, TMM has
more ability to follow the rapid variation of electron density than TBM.

The end objective of device simulation is to obtain the ID–VG characteristics of the device.
Figure 7 illustrates the ID–VG characteristics of the chosen model DG SOI device extracted by
TBM and TMM methods with the same mesh spacing a ¼ 1:6 nm. Compared to the reference

Figure 3. The distribution of transmission probability with energy in the DG-SOI model
device calculated by either TBM (dotted line) or TMM (dashed line). The reference results

calculated by a very fine mesh are also shown (solid line).

Figure 4. The error in the calculation of the transmission probability for the model
DG-SOI device calculated by either TBM (dotted line) or TMM (dash-dotted line)

both with mesh spacing a ¼ 1:6 nm.
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ID–VG characteristics, TMM is more accurate. The error in the drain current DID of the
two methods relative to the reference value is shown in Figure 8. At large gate bias voltages,
TMM is nearly 90 mA/mm less in error than TBM, which illustrates the superiority of TMM
over TBM.

Figure 5. The maximum error in the transmission probability calculated by both TBM and TMMmethods
versus the mesh spacing a. At a ¼ 1:6 nm, the maximum error of TMM is 4.6 times less.

Figure 6. The 2D subband electron density along the channel of a model DG device. Results of
TBM and TMM are compared to reference results.
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6. CONCLUSION

Transfer Matrix Method (TMM) was successfully used for the simulation of quantum transport
in DG SOI MOSFETs. Transport properties of the device such as transmission probability at
different energies, the 2D subband carrier density along the channel of the device, and ID–VG

characteristics were simulated. All simulation results of TMM were compared with the

Figure 7. ID–VG characteristics of the model DG-SOI device simulated by TMM and TBM methods
both with a mesh spacing of 1.6 nm. Reference results are also shown.

Figure 8. The relative error in the drain current of both TBM and TMM methods for the device
with settings are given in Figure 7.
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traditional tight-binding model (TBM) using the results at a very fine mesh as a reference. The
comparison verified the superiority of TMM over TBM method for quantum transport
simulation.
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